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Recently, the existence and properties of unbounded cavity modes, resulting in extensive plastic deformation
failure of two-dimensional sheets of amorphous media, were discussed in the context of the athermal shear-
transformation-zones �STZ� theory. These modes pertain to perfect circular symmetry of the cavity and the
stress conditions. In this paper we study the shape stability of the expanding circular cavity against perturba-
tions, in both the unbounded and the bounded growth regimes �for the latter the unperturbed theory predicts no
catastrophic failure�. Since the unperturbed reference state is time dependent, the linear stability theory cannot
be cast into standard time-independent eigenvalue analysis. The main results of our study are as follows: �i�
sufficiently small perturbations are stable; �ii� larger perturbations within the formal linear decomposition may
lead to an instability; this dependence on the magnitude of the perturbations in the linear analysis is a result of
the nonstationarity of the growth; and �iii� the stability of the circular cavity is particularly sensitive to
perturbations in the effective disorder temperature; in this context we highlight the role of the rate sensitivity
of the limiting value of this effective temperature. Finally we point to the consequences of the form of the
stress dependence of the rate of STZ transitions. The present analysis indicates the importance of nonlinear
effects that were not taken into account yet. Furthermore, the analysis suggests that details of the constitutive
relations appearing in the theory can be constrained by the modes of macroscopic failure in these amorphous
systems.
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I. INTRODUCTION

Some of the theoretically most fascinating aspects of
crack propagation in amorphous materials are the instabili-
ties that are observed in well controlled laboratory experi-
ments �1�. Besides some exceptions �see, for example, �2–4�
and also �5,6��, it would be fair to say that the observed
instabilities are still poorly understood. It is the opinion of
the present authors that the reason for the relative lack of
understanding is that the theory of crack propagation did not
treat cracks as moving free boundaries whose instabilities
stem from the dynamics of the free boundary itself. Instead,
“crack tip dynamics” were replaced by energy balance within
the theory of linear elastic fracture mechanics �7�, together
with an ad hoc “law” of one nature or another as to where a
crack is supposed to move.

In principle this undesirable state of affairs can be greatly
improved within the shear-transformation-zones �STZ�
theory of amorphous materials �8–11�. This theory treats de-
veloping cracks or growing cavities as free boundaries of a
material in which both elasticity and plasticity are taken into
account, preserving all the symmetries and conservation laws
that promise a possibly correct theory of amorphous materi-
als driven out of mechanical equilibrium. This theory in its
various appearances was compared to a number of experi-
ments and simulations �see below�, with a growing confi-
dence that although not final, STZ theory is developing in the
right direction. Indeed, the application of a highly simplified
version of STZ theory to crack propagation resulted in physi-
cally interesting predictions, explaining how plasticity can
intervene in blunting a crack tip and resulting in velocity
selection �12�. The application of the full fledged theory of

STZ to crack propagation is still daunting �although not im-
possible� due to the tensorial nature of the theory and the
need to deal with an extremely stiff set of partial differential
equations with a wide range of time scales and length scales
involved. For that reason it seemed advantageous to apply
the full theory to a situation in which the symmetries reduce
the problem to an effectively scalar theory; this is the prob-
lem of a circular cavity developing under circular symmetric
stress boundary conditions �13,14�. While this problem does
not reach the extreme conditions of stress concentration that
characterize a running slender crack, it still raises many
physical issues that appear also in cracks, in particular, the
give and take between elasticity and plasticity, the way
stresses are transmitted to moving boundaries �in apparent
excess of the material yield stress�, and most importantly for
this paper, the possible existence of dynamical instabilities of
the moving free boundary. This last issue might also be con-
nected to the difference between ductile and brittle behav-
iors. In the former, a growing cavity is likely to remain rather
smooth, whereas in the latter, one may expect an instability
resulting in the growth of “fingers,” possibly ending up being
cracks. It is one of the challenges of the present paper to
examine whether the theory may predict a transition, as a
function of material parameters or a constitutive relation, be-
tween these two types of behavior.

Note that we have chosen to study the problem in a purely
two-dimensional geometry; recently quasi-two-dimensional
systems exhibited interesting failure dynamics in laboratory
experiments, where the third dimension appears irrelevant
for the observed phenomena �5,15�. Our motivation here is,
however, theoretical, to reduce the unnecessary analytic and
numerical complications to a minimum and to gain insight as
to the main physical effects under the assumption that the
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thin third dimension in real systems does not induce a cata-
strophic change in behavior. When this assumption fails, as it
does in some examples, cf. �1�, the analysis must be ex-
tended to include the third dimension. This is beyond the
scope of this paper.

In Sec. II we present the equations that describe the prob-
lem at hand and specify their boundary conditions. Particular
attention is paid to distinguish between the general Eulerian
formulation which is model independent �Sec. II A� and the
constitutive relations involving plasticity where the STZ
model is explained �Sec. II B�. This section finishes with the
presentation of the unperturbed problem, preparing the stage
for the linear stability analysis which is discussed in Sec. III.
In this section we present a general analysis where inertia
and elastic compressibility effects are taken into account. In
Appendix B we complement the analysis by considering the
“quasistatic” �when the velocity of the boundary is suffi-
ciently small� and incompressible case �when the bulk modu-
lus is sufficiently large� and show that both formulations
agree with one another in the relevant range. The results of
the stability analysis are described in detail in Sec. IV and a
few concluding remarks are offered in Sec. V.

II. EQUATIONS AND BOUNDARY CONDITIONS

A. General formulation

We start by writing down the full set of equations for a
general two-dimensional elastoviscoplastic material. A basic
assertion of this theory is that plastic strain tensors in such
materials are not state variables since their values depend on
the entire history of deformation. Thus, one begins by intro-
ducing the total rate of deformation tensor

Dtot �
1

2
��v + ��v�T� , �2.1�

where v�r , t� is the material velocity at the location r at time
t and T denotes here the transpose of a tensor. This type of
Eulerian formulation has the enormous advantage that it dis-
poses of any reference state, allowing free discussion of
small or large deformations. As is required in an Eulerian
frame we employ the full material time derivative for a ten-
sor T,

DT

Dt
=

�T

�t
+ v · �T + T · � − � · T , �2.2�

where � is the spin tensor,

� �
1

2
��v − ��v�T� . �2.3�

For a scalar or vector quantity V the commutation with the
spin tensor vanishes identically. The Eulerian approach al-
lows a natural formulation of moving free boundary prob-
lems; this will be shown to lead to a significant advance
compared to more conventional treatments.

The plastic rate of deformation tensor Dpl is introduced by
assuming that the total rate of deformation tensor Dtot can be
written as a sum of a linear elastic and plastic contributions

Dtot =
D�el

Dt
+ Dpl. �2.4�

We further assume that Dpl is a traceless tensor, correspond-
ing to incompressible plasticity. All possible material com-
pressibility effects in our theory are carried by the elastic
component of the deformation. The components of the linear
elastic strain tensor �el are related to the components of stress
tensor, whose general form is

�ij = − p�ij + sij, p = −
1

2
�kk, �2.5�

according to

�ij
el = −

p

2K
�ij +

sij

2�
, �2.6�

where K and � are the two-dimensional bulk and shear
moduli, respectively. The tensor s is referred to hereafter as
the “deviatoric stress tensor” and p as the pressure. The
equations of motion for the velocity and density are

�
Dv

Dt
= � · � = − �p + � · s , �2.7�

D�

Dt
= − � � · v . �2.8�

In order to prepare the general set of equations for the
analysis of a circular cavity we rewrite the equations in polar
coordinates. For that aim we write

� = er�r +
e�

r
��, v = vrer + v�e�, �2.9�

where er and e� are unit vectors in the radial and azimuthal
directions, respectively. These expressions enable us to rep-
resent the divergence operator �· in the equations of motion
and the covariant derivative v ·� in the material time deriva-
tive of vectors and tensors. Some care should be taken in
evaluating these differential operators in polar coordinates
since the unit vectors themselves vary under differentiation
according to

�rer = 0, �re� = 0, ��er = e�, ��e� = − er. �2.10�

We then denote srr�−s, s���s, sr�=s�r��, and using Eqs.
�2.5� we obtain

�rr = − s − p ,

��� = s − p ,

�r� = ��r = � . �2.11�

In this notation the equations of motion �2.7� can be rewrit-
ten explicitly as

�� �vr

�t
+ vr

�vr

�r
+

v�

r

�vr

��
−

v�
2

r
� =

1

r

��

��
−

1

r2

�

�r
�r2s� −

�p

�r
,
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�� �v�

�t
+ vr

�v�

�r
+

v�

r

�v�

��
+

v�vr

r
� =

��

�r
+

1

r

�s

��
−

1

r

�p

��
+

2�

r
,

�2.12�

where � ·� is calculated explicitly in Appendix A.
Equations �2.4� can be rewritten in components form as

Dij
tot =

��ij
el

�t
+ �v · ��el�ij + �ir

el	rj + �i�
el	�j

− 	ir�rj
el − 	i���j

el + Dij
pl. �2.13�

Here the components of the total rate of deformation tensor
are related to the velocity according to Eqs. �2.1� as

Drr
tot �

�vr

�r
, D��

tot �
��v� + vr

r
,

Dr�
tot �

1

2
��rv� +

��vr − v�

r
	 , �2.14�

where the components of the spin tensor � in Eq. �2.3� are
given by

	rr = 	�� = 0,

	r� = − 	�r =
1

2
� ��vr − v�

r
− �rv�	 . �2.15�

The calculation of the tensor v ·��el is presented in Appendix
A; the linear elastic strain components of Eqs. �2.6� are given
by

�rr
el = −

p

2K
−

s

2�
,

���
el = −

p

2K
+

s

2�
,

�r�
el = ��r

el =
�

2�
. �2.16�

Since most of the materials of interest have a large bulk
modulus K, i.e., they are almost incompressible, we assume
that the density is constant in space and time

��r,t� 
 � . �2.17�

Therefore, Eq. �2.8� is omitted. Finally, the existence of a
free boundary is introduced as the following boundary con-
ditions:

�ijnj = 0, �2.18�

where n is the unit normal vector at the free boundary.

B. Viscoplastic constitutive equations: The athermal STZ
theory

Up to now we have considered mainly symmetries and
conservation laws. A general theoretical framework for the
elastoviscoplastic deformation dynamics of amorphous sol-

ids should be supplemented with constitutive equations relat-
ing the plastic rate of deformation tensor Dpl to the stress and
possibly to other internal state fields. We use the constitutive
equations of the recently proposed athermal shear-
transformation-zones �STZ� theory �11�. This theory is based
on identifying the internal state fields that control plastic
deformation. The basic observation is that stressing a disor-
dered solid results in localized reorganizations of groups of
particles. These reorganizations occur upon surpassing a lo-
cal shear threshold, and when they involve a finite irrevers-
ible shear in a given direction, we refer to them as an “STZ
transition.” Once transformed, due to a local redistribution of
stresses, the same local region resists further deformation in
that direction, but is particularly sensitive to shearing trans-
formation if the local applied stress reverses its direction.
Thus an STZ transition is conceived as a deformation unit
that can undergo configurational rearrangements in response
to driving forces. Furthermore, the stress redistribution that
accompanies an STZ transition can induce the creation and
annihilation of other local particle arrangements that can un-
dergo further localized transitions; these arrangements are
formed or annihilated at a rate proportional to the local en-
ergy dissipation �recall that thermal fluctuations are assumed
to be absent or negligible�. In this sense the interesting lo-
calized events need not depend on “preexisting” defects in
the material, but can appear and disappear dynamically in a
manner that we describe mathematically next.

This picture is cast into a mathematical form in terms of a
scalar field 
 that represents the normalized density of re-
gions that can undergo STZ transitions, a tensor m that rep-
resents the difference between the density of regions that can
undergo a transition under a given stress and the reversed
one, and an effective disorder temperature � that character-
izes the state of configurational disorder of the solid �16�.
The present state of the theory relates these internal state
fields, along with the deviatoric stress tensor s, to the plastic
rate of deformation tensor Dpl according to

�0Dij
pl = �0
C�s̄�� sij

s̄
− mij�, s̄ ��sijsij

2
. �2.19�

In this equation, �0 is the elementary time scale of plasticity
and �0 is a dimensionless constant. This equation represents
the dependence of the plastic rate of deformation on the cur-
rent stress sij and the recent history encoded by the internal
state tensorial field m. This field acts as a back stress, effec-
tively reducing the local driving force for STZ transitions, up
to the possible state of jamming when the whole parentheses
vanish. The parentheses provide information about the orien-
tation of the plastic deformation. The function C�s̄� deter-
mines the magnitude of the effect, and is rediscussed below.
The field 
 appears multiplicatively since the rate of plastic
deformation must be proportional to the density of STZ. The
second equation describes the dynamics of the internal back
stress field

�0

Dmij

Dt
= 2

�0Dij
pl

�0

− ��sij,mij�mij

e−1/�



,
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��sij,mij� =
�0sijDij

pl

�0

. �2.20�

This equation captures the dynamical exchange of stability
when the material yields to the applied stress. The equation
has a jammed fixed point when the plastic deformation van-
ishes, in agreement with the state of STZ being all in one
orientation, without the production of a sufficient number of
new ones in the other orientation. The jammed state is real-
ized when the applied stress is below the yield stress. When
the stress exceeds the threshold value the stable fixed point
of this equation corresponds to a solution with a nonvanish-
ing plastic rate of deformation. This state corresponds to a
situation where enough STZ are being created per unit time
to allow a persistent plastic flow. The quantity � represents
the rate of STZ production in response to the flow Dpl. We
note that for an isotropic material �before it had been de-
formed� mij has the same symmetry of the applied forces sij
as these are responsible for any symmetry breaking. This is
the situation considered below. In general, when the s
changes orientation m does not necessarily have the same
symmetry.

The next equation, for the density of STZ 
, is an el-
ementary fixed point equation reading

�0

D


Dt
= ��sij,mij��e−1/� − 
� . �2.21�

The unique fixed point of this equation is the equilibrium
solution 
=e−1/�, where � is a normalized temperaturelike
field which is not necessarily the bath temperature when the
system is out of thermal and/or mechanical equilibrium. The
last equation is for this variable, reading

�0c0

D�

Dt
= �0
��sij,mij�����0D̄pl� − �� ,

D̄pl ��Dij
plDij

pl

2
. �2.22�

This is a heatlike equation for the configurational degrees of
freedom; it is discussed in detail below. Here and elsewhere
we assume that quantities of stress dimension are always
normalized by the yield stress sy; this is justified as the STZ
equations exhibit an exchange of dynamic stability from
jamming to flow at s=1, i.e., at a stress that is equal to sy
�11�. The set of Eqs. �2.19�–�2.22� is a tensorial generaliza-
tion of the effectively scalar equations derived in �11�; such a
generalization can be obtained by following the procedure
described in Ref. �17�. Here c0 is a specific heat in units of kB
per particle.

A weak point of the theory is the lack of a first-principle
derivation that determines the function C�s� in Eq. �2.19�,
which lumps together much of the microscopic physics that
controls the stress-dependent rate of STZ transitions. Our
theory constrains it to be a symmetric function of s that
vanishes with vanishing derivatives at s=0, due to the ather-
mal condition that states that no transitions can occur in a
direction opposite to the direction of s �11�. This constraint is

not sufficient, however, to determine C�s�. To appreciate the
uncertainties, recall that STZ transitions are relaxation
events, where energy and stress are expected to redistribute.
Even without external mechanical forcing, aging in glassy
systems involves relaxation events that are poorly under-
stood �18�. The situation is even more uncertain when we
deal with dynamics far from mechanical equilibrium. The
best one can do at present is to choose the function C�s� by
examining its influence on the resulting macroscopic behav-
iors �19�. Thus in this paper we will examine the sensitivity
of the stability of the expanding cavity to two different
choices of C�s�. At present we use the one-parameter family
of functions, C�s̄�=F�s̄ ;��, proposed in �11�

F�s̄;�� �
��+1

�!
�

0

s̄

�s̄ − s��s�
� exp�− �s��ds�. �2.23�

The integral is over a distribution of transition thresholds
whose width is controlled by a parameter � �and see �11� for
details�. For finite values of � there can be nonzero subyield
plastic deformation for s  �1. This behavior is well docu-
mented in the literature cf. �20� in the context of experimen-
tal stress-strain relations and plastic deformations. We note
that for s very small or very large,

C�s� � s�+2 for s → 0+,

C�s� 
 s − 1 for s � 1. �2.24�

In Sec. IV C we propose a different one-parameter family of
functions G�s̄ ;�� and study in detail the implications of this
different choice on the stability of the expanding cavity.

Equation �2.22� deserves special attention. It is a heatlike
equation for the effective disorder temperature � with a fixed
point � which is attained under steady state deformation.
This reflects the observations of Ref. �21�, where the effec-
tive temperature � was shown to attain a unique value in the

limit t0D̄pl→0, where t0 was the particles vibrational time
scale. Indeed, in most applications, realistically imposed in-
verse strain rates are much larger than the elementary time

scale t0, i.e., t0D̄pl�1. If we identify our �0 with the vibra-
tional time scale t0 �see, for example, �22��, we conclude that
� can be taken as a constant, independent of the plastic rate
of deformation. This assumption was adopted in all previous
versions of STZ theory. Note also that a low plastic rate of
deformation is associated with s→1+, i.e., a deviatoric stress
that approaches the yield stress from above. However, the
situation might be very different in free boundary evolution
problems, where high stresses concentrate near the boundary,
reaching levels of a few times the yield stress. Estimating �
in the typical range of 0.1–0.15 �22,23�, e−1/� is in the range
10−4–10−3. Therefore, estimating the other factors in Eq.
�2.19�, for the high stresses near the free boundary, in the

range 1–10, we conclude that �0D̄pl can reach values in the
range 10−4–10−2. Very recent simulations �24� demonstrated
convincingly that in this range of normalized plastic rates of
deformation, � shows a considerable dependence on this
rate �see Fig. 1�. Since � affects plastic deformation through
an exponential Boltzmann-type factor, even small changes of
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� in Eq. �2.22� can generate significant effects �25�. This
issue is of particular importance for the question of stability
�and localization� under study since the strain rate sensitivity
of � might incorporate an instability mechanism; fluctua-
tions in the plastic rate of deformation, caused for example
by fluctuations in �, can induce, through �, a further local-
ized increase in plastic deformation and so on. This intuitive
idea will be studied in the analysis to follow.

The set of Eqs. �2.19�–�2.22� �26� �and slight variants�
was shown to capture viscoelastic behavior in a variety of
examples. These include small stress and finite plasticity at
intermediate stresses �27�, a transition to flow at the yield
stress �as discussed above� �11�, the deformation dynamics of
simulated amorphous silicon �22�, the necking instability
�28�, the deformation dynamics near stress concentrations
�13�, the cavitation instability �14�, and strain localization
�29�. In this work we focus on the implications of these
constitutive equations on the stability of propagating free
boundaries in relation to the failure modes of amorphous
solids.

C. Unperturbed problem

In this subsection we adapt the general theory to the cir-
cular symmetry of the unperturbed expanding cavity prob-
lem. We consider an infinite medium with a circular cavity of
radius R�0��t�, loaded by a radially symmetric stress � at
infinity. The superscript �0� in all the quantities denotes the
fact that they correspond to the perfectly symmetric case that
is going to be perturbed later on. For the perfect circular
symmetry the velocity field v�0��r ,�� is purely radial and
independent of the azimuthal angle �, i.e.,

vr
�0��r,t� = vr

�0��r,t�, v�
�0��r,t� = 0. �2.25�

This symmetry also implies that

��0��r,t� = 0, Dr�
pl�0��r,t� = 0, mr�

�0��r,t� = 0, �2.26�

and all the diagonal components are independent of �. Equa-
tion �2.4�, using Eqs. �2.13�, �2.14�, and �2.16�, can be re-
written as

vr
�0�

r
+

�vr
�0�

�r
= −

1

K
� �p�0�

�t
+ vr

�0��p�0�

�r
� , �2.27�

vr
�0�

r
−

�vr
�0�

�r
=

1

�
� �s�0�

�t
+ vr

�0��s�0�

�r
� + 2Dpl�0�, �2.28�

where we have defined

D��
pl�0� = − Drr

pl�0� � Dpl�0�. �2.29�

The equations of motion �2.12� reduce to

�� �vr
�0�

�t
+ vr

�0��vr
�0�

�r
� = −

1

r2

�

�r
�r2s�0�� −

�p�0�

�r
. �2.30�

The boundary conditions are given by

�rr
�0��R�0�,t� = − p�0��R�0�,t� − s�0��R�0�,t� = 0,

�rr
�0��,t� = − p�0��,t� − s�0��,t� = �. �2.31�

The initial conditions are chosen to agree with the solution of
the static linear-elastic problem, i.e.,

p�0��r,t = 0� = − �,

s�0��r,t = 0� = �
�R�0��t = 0��2

r2 ,

vr
�0��r,t = 0� = 0. �2.32�

This choice reflects the separation of time scales between
elastic and plastic responses. This separation of time scales
can be written explicitly in terms of the typical elastic wave
speed, the radius of the cavity, and the time scale of plasticity
as follows:

R�0��t = 0�� �

�
� �0e1/�. �2.33�

Finally, the rate of the cavity growth is simply determined by

Ṙ�0��t� = vr
�0��R�0�,t� . �2.34�

For the circular symmetry, the STZ equations �2.19� and
�2.20� reduce to

�0Dpl�0� = �0
�0�C�s�0��� s�0�

s�0�
− m�0�� , �2.35�

�0� �m�0�

�t
+ vr

�0��m�0�

�r
� = 2

�0Dpl�0�

�0
�0� − ��0��s�0�,m�0��m�0�e
−1/��0�


�0� ,

�2.36�

�0� �
�0�

�t
+ vr

�0��
�0�

�r
� = ��0��s�0�,m�0���e−1/��0�

− 
�0�� ,

�2.37�

−5 −4.5 −4 −3.5 −3 −2.5 −2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
10

(τ
0
Dpl)

χ ∞

FIG. 1. �Color online� A typical relation between � and

log10��0D̄pl� for a temperature significantly smaller than the glass
transition temperature. Data courtesy of T. Haxton and A. Liu. Note
that the data were scaled properly.
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�0c0� ���0�

�t
+ vr

�0����0�

�r
�

= �0
�0���0��s�0�,m�0������0Dpl�0�� − ��0�� . �2.38�

Note that the � and Dpl equations contain a factor of the
small STZ density �0
�0�, which implies they are much
stiffer than the m and 
 equations. Therefore, whenever the
advection terms can be neglected this separation of time
scales �13� allows us to replace the equations for m�0� and

�0� by their stationary solutions

m�0� = �
s�0�

s�0�
if s�0� � 1

1

s�0� if s�0� � 1,� �2.39�

and


�0� = e−1/��0�
. �2.40�

Note that Eq. �2.36� has two stable fixed-point solutions
given by Eq. �2.39�, where we used Eq. �2.40� and omitted
the advection term. The transition between these two solu-
tions corresponds to a transition between a jammed and a
plastically flowing state for a deviatoric stress below and
above the yield stress, respectively �11�. Equation �2.35� ex-
hibits the corresponding solutions in terms of the plastic rate
of deformation, zero and finite, below and above the yield
stress, respectively.

The unperturbed problem was studied in detail in Ref.
�14�. It was shown that for stresses � smaller than a thresh-
old value �th
5 the cavity exhibits transient dynamics in
which its radius approaches a finite value in a finite time.
When this happens the material is jammed. On the other
hand, for ���th the cavity grows without bound, leading to
a catastrophic failure of the material, accompanied by large
scale plastic deformations. We stress that this mode of failure
by propagating a plastic solution is apparently not related to
other recently discovered failure fronts �30�. One major goal
of the present study is to analyze the stability of the un-
bounded growth modes that result from this cavitation. How-
ever, we are also interested in the range ���th, where the
unperturbed theory predicts no catastrophic failure. In this
range, a failure can still occur if the cavity, prior to jamming,
loses its perfect circular symmetry in favor of relatively slen-
der propagating “fingers.” In that case, stress localization
near the tips of the propagating fingers can lead to failure via
fracture. Such a scenario is typical of brittle fracture where
the stress localization due to the geometry of the defect
drives crack propagation that might lead to macroscopic fail-
ure.

III. LINEAR STABILITY ANALYSIS

We derive here a set of equations for the linear perturba-
tions of the perfect circular symmetry where both inertia and
elastic compressibility effects are taken into account. In Ap-
pendix B we complement the analysis by considering the
quasistatic and incompressible case. This case is mathemati-

cally more involved as it contains no explicit time evolution
equation for the velocity and the pressure fields. By compar-
ing the results of the two formulations we test for consis-
tency and obtain some degree of confidence in the derivation
and the numerical implementation of the equations presented
in this section.

A. Equations of motion and kinematics

The quantities involved in the problem are the tensors

s = �− s �

� s
�, Dpl = �− Dpl Dr�

pl

Dr�
pl Dpl � , �3.1�

as well as the pressure p�r , t�, the velocity v�r , t� and the
location of the free boundary R�� , t�. We start by expanding
all these quantities as follows:

R��,t� = R�0��t� + ein�R�1��t� ,

s�r,�,t� = s�0��r,t� + ein�s�1��r,t� ,

��r,�,t� = iein���1��r,t� ,

p�r,�,t� = p�0��r,t� + ein�p�1��r,t� ,

v��r,�,t� = iein�v�
�1��r,t� ,

vr�r,�,t� = vr
�0��r,t� + ein�vr

�1��r,t� ,

Dpl�r,�,t� = Dpl�0��r,t� + ein�Dpl�1��r,t� ,

Dr�
pl �r,�,t� = iein�Dr�

pl�1��r,t� . �3.2�

Here all the quantities with the superscript �1� are assumed to
be much smaller than their �0� counterparts and n is the
discrete azimuthal wave number of the perturbations. The
small perturbation hypothesis results in a formal linear de-
composition in which each linear mode of wave number n is
decoupled from all the other modes. When nonlinear contri-
butions are non-negligible, all the modes become coupled
and the formal linear decomposition is invalid.

We expand then the equations of motion �2.12� to first
order to obtain

�� �vr
�1�

�t
+ vr

�0��vr
�1�

�r
+ vr

�1��vr
�0�

�r
�

= −
n��1�

r
−

1

r2

�

�r
�r2s�1�� −

�p�1�

�r
, �3.3�

�� �v�
�1�

�t
+ vr

�0��v�
�1�

�r
+

vr
�0�v�

�1�

r
� =

���1�

�r
+

ns�1�

r
−

np�1�

r
+

2��1�

r
.

�3.4�

We proceed by expanding Eqs. �2.4� to first order, which
after a simple manipulation yields

�vr
�1�

�r
+

− nv�
�1� + vr

�1�

r
= −

1

K
� �p�1�

�t
+ vr

�0��p�1�

�r
+ vr

�1��p�0�

�r
� ,

�3.5�
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− nv�
�1� + vr

�1�

r
−

�vr
�1�

�r

=
1

�
� �s�1�

�t
+ vr

�0��s�1�

�r
+ vr

�1��s�0�

�r
	 + 2Dpl�1�, �3.6�

1

2
� �v�

�1�

�r
+

nvr
�1� − v�

�1�

r
	

=
1

2�
� ���1�

�t
+ vr

�0����1�

�r
−

2s�0�v�
�1�

r
	 + Dr�

pl�1�. �3.7�

At this point we derive an evolution equation for the di-
mensionless amplitude of the shape perturbation R�1� /R�0�. To
that aim we note that

Ṙ = vr�R� + O��R�1�

R�0��2	 . �3.8�

Expanding this relation using Eqs. �3.2�, we obtain to zeroth
order Eq. �2.34� and to first order

Ṙ�1��t� = vr
�1��R�0�� + R�1��vr

�0��R�0��
�r

. �3.9�

Therefore, we obtain

d

dt
�R�1�

R�0�� =
R�1�

R�0��vr
�1��R�0��

R�1� +
�vr

�0��R�0��
�r

−
vr

�0��R�0��
R�0� 	 .

�3.10�

This is an important equation since a linear instability mani-
fests itself as a significant increase in R�1� /R�0� such that
nonlinear terms become non-negligible. Note that the two
last terms in the square brackets are always negative, there-
fore an instability can occur only if the first term in the
square brackets is positive with absolute value larger than the
sum of the two negative terms. Moreover, recall that the
problem is nonstationary, implying that all the zeroth order
quantities depend on time.

In order to derive the boundary conditions for the compo-
nents of the stress tensor field we expand to linear order the
normal unit vector n �not to be confused with the discrete
wave number n� and tangential unit vector t at the free
boundary, obtaining

n = �1,− i
R�1�

R�0�nein��, t = �i
R�1�

R�0�nein�,1� . �3.11�

Eq. �2.18�, expanded to first order, translates to

s�1��R�0�� + p�1��R�0�� = − R�1�� �s�0��R�0��
�r

+
�p�0��R�0��

�r
	 ,

�3.12�

�1�R�0�� = n�s�0��R�0�� − p�0��R�0���
R�1�

R�0� . �3.13�

In addition, all the first order fields decay as r→. The
initial conditions are determined by the perturbation scheme
that is being studied.

To avoid dealing with an infinite and time-dependent do-
main we applied the following time-dependent coordinate
transformation:

� = R�t�/r . �3.14�

This transformation allows us to integrate the equations in
the time-independent finite domain �� �0,1�, with the price
of introducing new terms in the equations. Controlling the
equations at small distances required the introduction of an
artificial viscosity on the right-hand side �RHS� of Eq. �2.7�.
The term introduced is ���2v, with � chosen of the order of
the square of space discretization over the time discretiza-
tion. This introduces zeroth order contributions on the RHS
of Eq. �2.30� and first order contributions on the RHS of Eqs.
�3.3� and �3.4�.

B. Linear perturbation analysis of the STZ equations

The only missing piece in our formulation is the pertur-
bation of the tensorial STZ equations. In addition to the
fields considered up to now, the analysis of the STZ equa-
tions includes also the internal state fields

m = �− m mr�

mr� m
�, 
 and � . �3.15�

Therefore, in addition to Eqs. �3.2� we have

m�r,�,t� = m�0��r,t� + ein�m�1��r,t� ,

mr��r,�,t� = iein�mr�
�1��r,t� ,


�r,�,t� = 
�0��r,t� + ein�
�1��r,t� ,

��r,�,t� = ��0��r,t� + ein���1��r,t� . �3.16�

We then expand systematically Eqs. �2.19�–�2.23�. First,
we have

s̄ =�2�s�0� + ein�s�1��2 + 2���1�ein��2

2


 s�0� + ein�s�1�

= s�0� + ein�s�1� sgn�s�0�� . �3.17�

Accordingly we expand C�s̄� �assuming s�0��0� in the form

C�s̄� = C�s�0� + ein�s�1�� 
 C�s�0�� +
dC
ds

�s�0��ein�s�1�,

�3.18�

where

dC
ds

�s�0�� =
��+1

�!
�

0

s�0�
s�

� exp�− �s��ds�. �3.19�

Substituting the last three equations into Eq. �2.19� and ex-
panding to first order, we obtain
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�0Dpl�1� = �0
�0���
�1�


�0�C�s�0�� + s�1�dC�s�0��
ds

�
��sgn�s�0�� − m�0�� − C�s�0��m�1�	 , �3.20�

�0Dr�
pl�1� = �0
�0�C�s�0��� ��1�

s�0�
− mr�

�1�� . �3.21�

We then expand � in the form

� = ��0� + ein���1� with ��0� =
2�0s�0�Dpl�0�

�0
�0� ,

��1� =
2�0

�0
�0��s�0�Dpl�1� + s�1�Dpl�0� −
s�0�Dpl�0�
�1�


�0� 	 .

�3.22�

Equation �2.20� is now used to obtain

�0� �m�1�

�t
+ vr

�0��m�1�

�r
+ vr

�1��m�0�

�r
�

=
2�0

�0
�0��Dpl�1� − Dpl�0�

�1�


�0�� −
e−1/��0�


�0�

����0�m�1� + ��1�m�0� + ��0�m�0�� ��1�

���0��2 −

�1�


�0��	 ,

�3.23�

and

�0� �mr�
�1�

�t
+ vr

�0��mr�
�1�

�r
−

m�0�v�
�1�

r
�

=
2�0Dr�

pl�1�

�0
�0� − ��0�mr�
�1�e

−1/��0�


�0� . �3.24�

Using Eq. �2.21� we obtain

�0� �
�1�

�t
+ vr

�0��
�1�

�r
+ vr

�1��
�0�

�r
�

= ��0��e−1/��0� ��1�

���0��2 − 
�1�� + ��1��e−1/��0�
− 
�0�� .

�3.25�

Expanding D̄pl, similarly to Eq. �3.17�, we obtain

D̄pl 
 Dpl�0� + ein�Dpl�1� sgn�Dpl�0�� . �3.26�

Accordingly we expand ���0D̄pl� �with Dpl�0�
�0� in the

form

���0D̄pl� = ���0Dpl�0� + ein��0Dpl�1��

= ���0Dpl�0�� +
d�

dD̄pl
��0Dpl�0��ein�Dpl�1�.

�3.27�

Then, using Eq. �2.22� we obtain

�0c0� ���1�

�t
+ vr

�0����1�

�r
+ vr

�1����0�

�r
�

= �0�
�0���1� + ��0�
�1������0Dpl�0�� − ��0�� + �0
�0���0�

�� d�

dD̄pl
��0Dpl�0��Dpl�1� − ��1�	 . �3.28�

Thus, Eqs. �3.20�, �3.21�, �3.23�–�3.25�, and �3.28� constitute
our equations for the dynamics of the first order STZ quan-
tities.

These equations already reveal some interesting features.
First note that the coupling between Dpl�1�

�which is the quan-
tity that is expected to be of major importance in determining
vr

�1� in Eq. �3.10� through Eqs. �3.5�–�3.8�� and ��1�, m�1�

depends on C�s�0��. This means that the strength of the cou-
pling depends on �. Similarly, the coupling between Dpl�1�

and s�1� depends on dC�s�0�� /ds, which is also a function of �.
These observations demonstrate the importance of the pre-
cise form of the function C�s�. This issue is further discussed
in Sec. IV C. Finally, note that whenever the advection terms
can be neglected, the known separation of time scales �13�
allows us to use Eqs. �2.39� and �2.40� and to replace the
equations for m�1�, mr�

�1�, and 
�1� by their stationary solutions

m�1� = �0 if s�0� � 1

−
s�1�

�s�0��2 if s�0� � 1, � �3.29�

mr�
�1� = �

��1�

s�0� if s�0� � 1

��1�

�s�0��2 if s�0� � 1,� �3.30�

and


�1� =
��1�

���0��2e−1/��0�
. �3.31�

In the next section we summarize the results of our analy-
sis of the equations derived in Secs. II C, III A, and III B.

IV. RESULTS

We are now ready to present and discuss the results of the
stability analysis of the expanding circular cavity. The full
set of equations was solved numerically as discussed above.
Time and length are measured in units of �0 and R�0� �t=0�,
respectively. 
 and m are set initially to their respective fixed
points. The material-specific parameters used are �0=1, c0
=1, � /sy =50, K /sy =100, �=1, ��0�=0.11, �=0.13, and �
=7, unless otherwise stated. In Sec. IV A we study perturba-
tions of the shape of the cavity and of the effective tempera-
ture �. In Sec. IV B we study the effect of the rate depen-
dence of � on the stability analysis and in Sec. IV C we
analyze the effect of the stress-dependent rate function C�s�.

A. Perturbing the shape and �

Studying the linear stability of the expanding cavity can
be done by selecting which fields are perturbed and which
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are left alone. In practice each of the fields involved in the
problem may experience simultaneous fluctuations, includ-
ing the radius of the cavity itself. Therefore, one of our tasks
is to determine which of the possible perturbations leads to a
linear instability. To start, we perturb the radius of the ex-
panding cavity at t=0 while all the other fields are left alone.
In Fig. 2 we show the ratio R�1� /R�0� as a function of time for
various loading levels � �both below and above the cavita-
tion threshold� and wave numbers n. The initial amplitude of
the perturbation was set to R�1� /R�0�=10−3. The observation
is that the ratio R�1� /R�0� does not grow in time in all the
considered cases where the radius was perturbed, implying
that here the circular cavity is stable against shape perturba-
tions. Note that R�1� /R�0� decays faster for larger n and for
larger �. Also note that for �=6.1, i.e., for unbounded
zeroth order expansion, the ratio R�1� /R�0� decays to zero
while below the cavitation threshold this ratio approaches a
finite value. The latter observations mean that when the ma-
terial approaches jamming �with R�0� attaining a finite value
in a finite time� the perturbation has not yet disappeared
entirely.

We stress at this point the nonstationary nature of the
problem in which R�0��t� is an increasing function of time.
Thus, even if the absolute magnitude of the amplitude of the
shape perturbation R�1��t� increases with time, an instability
is not automatically implied; R�1��t� should increase suffi-
ciently faster than R�0��t� in order to imply an instability. To
exemplify this feature of the problem, we present in Fig. 3
R�1��t� for �=2.1 and n=4. It is observed that even though
R�1� increases, the smallness parameter R�1� /R�0� decreases
�see Fig. 2�. Note also that R�1� does not increase exponen-
tially as expected in stationary linear stability analysis, but
rather tends to asymptote to a constant.

Next we have tested the stability of the expanding cavity
against initial perturbations in the velocity field or in the
stress field. The results were quantitatively similar to those
for the shape perturbations summarized in Figs. 2 and 3, all
implying linear stability.

In light of these results, we concentrated then on the effect
of perturbations in the STZ internal state fields. Since the

dynamics of the tensor m are mainly determined by the de-
viatoric stress field s, we focus on fluctuations in the effec-
tive disorder temperature �. This may be the most liable field
to cause an instability. Indeed, in Ref. �29� it was shown that
� perturbations control strain localization in a shear banding
instability. Qualitatively, an instability in the form of grow-
ing fingers involves strain localization as well; plastic defor-
mations are localized near the leading edges of the propagat-
ing fingers. In Ref. �29�, based on the data of Ref. �23�, it
was suggested that the typical spatial fluctuations in � have
an amplitude reaching about 30% of the homogeneous back-
ground �. Obviously we cannot treat such large perturbations
in a linear analysis and must limit ourselves to smaller per-
turbations. In Fig. 4 we show the ratio R�1� /R�0� as a function
of time for a perturbation of size ��1� /��0�=0.03, introduced
at time t=0. The wave number was set to n=4 and � was
set both below and above the cavitation threshold. First, note
that for both loading conditions R�1� /R�0� increases on a short
time scale of about 1000�0, a qualitatively different behavior
compared to the system’s response to shape perturbations.

0 2000 4000 6000 8000 10000
0

0.5

1

1.5
x 10

−3

t/τ
0

R
(1

) /R
(0

)

0 2000 4000 6000 8000 10000
6

7

8

9

10

x 10
−4

R
(1

) /R
(0

)

t/τ
0

σ∞=2.1

σ∞=4.1

σ∞=6.1

n=2

n=4

n=8

FIG. 2. �Color online� Upper panel: The ratio R�1� /R�0� as a
function of time for n=4 and �=2.1, 4.1, and 6.1. Note that the
last value is above the cavitation threshold. Lower panel: The ratio
R�1� /R�0� as a function of time for �=4.1 and n=2, 4, and 8.
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FIG. 3. �Color online� R�1� as a function of time for �=2.1 and
n=4.
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FIG. 4. �Color online� The ratio R�1� /R�0� as a function of time
for a perturbation of size ��1� /��0�=0.03 and n=4, introduced at
time t=0. The solid line corresponds to �=4.1 �below the cavita-
tion threshold� and the dashed line corresponds to �=6.1 �above
the cavitation threshold�.
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Second, note the qualitatively different response below and
above the cavitation threshold. In the former case, R�1� /R�0�

increases monotonically, approaching a constant value when
R�0� attains a finite value �i.e., jamming�. In the latter case,
R�1� /R�0� increases more rapidly initially, reaches a maxi-
mum, and then decays to 0 in the large t limit. Therefore, in
spite of the initial growth of R�1� /R�0�, for this magnitude of
� perturbations, the expanding circular cavity is linearly
stable; below the cavitation threshold the relative magnitude
of the deviation from a perfect circular symmetry R�1� /R�0�

tends to a finite constant, i.e., a shape perturbation is “locked
in” the material, while above the threshold the cavity retains
its perfect circular symmetry in the large t limit. Neverthe-
less, in light of the significant short time increase in R�1� /R�0�

�here up to 0.6%�, we increased the initial �t=0� � perturba-
tion to the range ��1� /��0�=0.05–0.06, in addition to shape
perturbations of a typical size of R�1� /R�0�=0.02–0.03. In
these cases R�1� /R�0� grows above 5%; even more impor-
tantly, the field ��1��r ,�� �as well as other fields in the prob-
lem� becomes larger than 0.1��0��r ,�� near the boundary of
the cavity, invalidating the small perturbation hypothesis be-
hind the perturbative expansion and signaling a linear insta-
bility. Naturally, this breakdown of the linearity condition
takes place first near a peak of the ratio R�1� /R�0�, similar to
the one observed in Fig. 4.

We thus propose that sufficiently large perturbations in the
shape of the cavity and the effective disorder temperature �,
but still of formal linear order, may lead to an instability.
This dependence on the magnitude of the perturbations in a
linear analysis is a result of the nonstationarity of the growth.
Another manifestation of the nonstationarity is that even in
cases where we detect an instability, it was not of the usual
simple exponential type where an eigenvalue changes sign as
a function of some parameter �or group of parameters�. Com-
bined with the evidence for the existence of large fluctua-
tions in � �23,29�, the present results indicate that it will be
worthwhile to study the problem by direct boundary tracking
techniques where the magnitude of the perturbation is not
limited.

We conclude that the issue of the stability of the expand-
ing cavity can be subtle. Sufficiently small perturbations are
stable, though there is a qualitative difference in the response
to perturbations in the effective disorder temperature �,
where the ratio R�1� /R�0� increases �at least temporarily�, and
other perturbations, where R�1� /R�0� decays. We have found
that for large enough � perturbations combined with initial
shape perturbations, but still within the formal linear regime,
the growth of R�1� /R�0� takes the system beyond the linear
regime, making nonlinear effects non-negligible and signal-
ing an instability. This observation is further supported by
the existence of large � fluctuations discussed in �23,29�.
Note that none of these conclusions depend significantly on
variations in �0 and c0. Moreover, perturbing the expanding
cavity at times different than t=0 or introducing a pressure
inside the cavity instead of a tension at infinity did not
change any of the results.

B. Effect of the rate dependence of ��

The analysis of Sec. IV A indicates the existence of a
linear instability as a result of varying the magnitude of the

perturbations, mainly in �, and not as a result of varying
material parameters. Here, and in Sec. IV C, we aim at
studying the effect of material-specific properties on the sta-
bility of the expanding cavity. Up to now we considered �

as a constant parameter. However, as discussed in detail in
Sec. II B, the plastic rate of deformation near the free bound-
ary can reach values in the range where changes in � were
observed. Therefore, we repeated the calculations using the

function ���0D̄pl� plotted in Fig. 1. In Fig. 5 we compare
R�1� /R�0� as a function of time with and without a plastic rate
of deformation dependence of �, both above and below the
cavitation threshold. The initial perturbation has ��1� /��0�

=0.03 and n=4. Both below and above the cavitation thresh-

old the plastic rate of deformation-dependent ���0D̄pl� in-
duces a stronger growth of R�1� /R�0�, though the effect is
much more significant above the threshold. This is under-
stood as a significantly higher rate of deformation is devel-
oped above the cavitation threshold, where unbounded
growth takes place �14�, compared to below the threshold
where the rate of deformation vanishes at a finite time. We

note that the dependence of � on D̄pl affects both the zeroth
and first order solutions such that R�0� and R�1� increase. Our
results show that R�1� is more sensitive to this effect than
R�0�, resulting in a tendency to lose stability at yet smaller
perturbations. We conclude that the tendency of � to in-
crease with the rate of deformation plays an important role in
the stability of the expanding cavity and might be crucial for
other strain localization phenomena as the shear banding in-
stability �29�. Moreover, this material-specific dependence of
�, which was absent in previous formulations of STZ
theory, might distinguish between materials that experience
catastrophic failure and those that do not, and between ma-
terials that fail through a cavitation instability �14� and those
who fail via the propagation of fingers that may evolve into
cracks. This new aspect of the theory certainly deserves more
attention in future work. We note in passing that recently an
alternative equation to Eq. �2.22� for the time evolution of
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FIG. 5. �Color online� Upper panel: R�1� /R�0� as a function of
time for �=4.1 �below the cavitation threshold�. The solid line
corresponds to a constant � and the dashed line corresponds to the

plastic rate of deformation dependent ���0D̄pl� of Fig. 1. The ini-
tial perturbation has ��1� /��0�=0.03 and n=4. Lower panel: The
same with �=6.1 �above the cavitation threshold�.
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the effective temperature � was proposed in light of some
available experimental and simulational data �31�. Prelimi-
nary analysis of the new equation in relation to the stability
analysis performed in this paper indicates that the circular
cavity does become linearly unstable �32�. A more systematic
study of this effect may be a promising line of future inves-
tigation.

C. Effect of changing the stress-dependent rate function C(s)

Here we further study the possible effects of details of the
constitutive behavior on the macroscopic behavior of the ex-
panding cavity. In this subsection we focus on the material
function C�s�. This phenomenological function, as discussed
in Sec. II B, describes the stress-dependent STZ transition
rates. It is expected to be symmetric and to vanish smoothly
at s=0 in athermal conditions �11�. The plastic rate of defor-
mation for s�1 can be measured in a steady state stress-
controlled simple shear experiment. For such a configuration
the deviatoric stress tensor is diagonal and the stable fixed
points of Eqs. �2.20�–�2.22� imply that the steady state plas-
tic rate of deformation of Eq. �2.19� reads

�0Dpl = �0e−1/�C�s��1 −
1

s
� . �4.1�

Therefore, if the steady state relation ��s� is known, C�s�
can be determined from measuring the steady state value of
Dpl for various s�1 �see, for example, �24��. The idea then
is to interpolate the s→0+ behavior to the s�1 behavior
with a single parameter that controls the amount of subyield
deformation in the intermediate range. In fact, a procedure to
measure C�s� at intermediate stresses was proposed in Ref.
�19�. Up to now we used the one-parameter family of func-
tions F�s ;�� of Eq. �2.33�, where � controls the subyield
deformation.

We now aim at studying the effect of choosing another
function C�s�. Here we specialize for C�s̄�=G�s̄ ;��, with

G�s̄;�� �
s̄1+�

1 + s̄�
. �4.2�

In Fig. 6 we show C�s� according to the previous choice of
Eq. �2.23� with �=7 and also C�s� according to the present
choice of Eq. �4.2� with �=30. The different behaviors of
C�s� and dC�s� /ds near s=1 might affect differently R�0� and
R�1�, thus influencing the stability of the expanding cavity.

In Fig. 7 we compare R�1� /R�0� as a function of time for
C�s� of Eq. �2.23� �previous choice� with �=7 and C�s� of Eq.
�4.2� �present choice� with �=30, both for a constant �. An
effective temperature perturbation with ��1� /��0�=0.03 and
n=4 was introduced at t=0 for �=4.1. We observe that
R�1� /R�0� grows faster for the present choice compared to the
previous one. For the sake of illustration we added the result
of a calculation with the plastic rate of deformation-
dependent � as discussed in Sec. IV B. As expected, the
effect is magnified. We conclude that the material-specific
function of the stress dependence of the STZ transition rates
C�s� can affect the stability of the expanding cavity, possibly
making it unstable for smaller perturbations. Again, the rela-

tions between this constitutive property and the macroscopic
behavior should be further explored in future work. Bringing
into consideration explicit macroscopic measurements, one
can constrain the various phenomenological features of the
theory of amorphous plasticity. This philosophy provides a
complementary approach to obtaining a better microscopic
understanding of the physical processes involved.

V. CONCLUDING REMARKS

We presented in this paper a detailed analysis of the linear
stability of expanding cavity modes in amorphous elastovis-
coplastic solids. The stability analysis is somewhat delicate
due to the nonstationarity of the problem, thus a perturbation
may grow leaving the problem stable if this growth is slower
than the growth of the radius of the cavity. The radial sym-
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FIG. 6. �Color online� The function C�s� of Eq. �2.23� with �
=7 �dashed line� and of Eq. �4.2� with �=30 �solid line�.
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FIG. 7. �Color online� R�1� /R�0� as a function of time for an
effective temperature perturbation with ��1� /��0�=0.03 and n=4 for
�=4.1. The solid line corresponds to C�s̄� of Eq. �2.23� with �
=7 and the dotted line corresponds to C�s̄� of Eq. �2.23� with �
=30 �see Fig. 6�. In both cases a constant � was used. The dotted-
dashed line corresponds to C�s̄� of Eq. �4.2� with �=30 and the

rate-dependent ���0D̄pl� presented in Fig. 1.
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metry of the expanding cavity makes it surprisingly resilient
to perturbations in shape, velocity, external strains, and pres-
sure. On the other hand the radial symmetry may be lost due
to perturbations in the internal state fields, especially �, and
is also sensitive to details of the constitutive relations that are
employed in the STZ theory. In this respect we highlight the

role of the plastic rate of deformation-dependent ���0D̄pl�
and of the stress-dependent rates of STZ transitions C�s�. It is
difficult to reach conclusive statements, since the growth of
perturbations beyond the linear order invalidate the approach
taken here, calling for new algorithms involving surface
tracking, where the size of perturbations is not limited. Nev-
ertheless the results point out that instabilities are likely, mo-
tivating further research into the nonlinear regime. Of par-
ticular interest is the possibility to select particular forms of
constitutive relations by comparing the predictions of the
theory to macroscopic experiments. This appears as a prom-
ising approach in advancing the STZ theory towards a final
form.
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APPENDIX A: DIFFERENTIAL OPERATORS IN POLAR
COORDINATES

The aim of this appendix is to derive some expressions in
polar coordinates that were used earlier in the paper. Specifi-
cally, our goal is to calculate the divergence and covariant
derivative of a tensor in polar coordinates. We represent a
general second order tensor T in polar coordinates as

T = Tijei � e j , �A1�

where ei and e j are unit vectors in polar coordinates and �

denotes a tensor product. Using Eqs. �2.9� and �2.10� we
obtain

er · �� · T� = �rTrr +
Trr

r
+

��T�r

r
−

T��

r
,

e� · �� · T� = �rTr� +
Tr�

r
+

T�r

r
+

��T��

r
. �A2�

Substituting Eqs. �2.11� for T, we obtain the right-hand sides
of Eqs. �2.12�.

We proceed now to calculate the covariant derivative of a
tensor v ·�T. Using Eqs. �2.9�, �2.10�, and �A1� we obtain

�v · �T�rr = vr�rTrr +
v�

r
��Trr −

v�

r
Tr� −

v�

r
T�r,

�v · �T�r� = vr�rTr� +
v�

r
Trr +

v�

r
��Tr� −

v�

r
T��,

�v · �T��r = vr�rT�r +
v�

r
Trr +

v�

r
��T�r −

v�

r
T��,

�v · �T��� = vr�rT�� +
v�

r
Tr� +

v�

r
T�r +

v�

r
��T��. �A3�

Substituting Eqs. �2.16� for T we obtain the needed expres-
sions for �v ·��el�ij in Eq. �2.13�.

APPENDIX B: THE QUASISTATIC AND
INCOMPRESSIBLE CASE

The aim of this appendix is to derive independently the
linear perturbation theory for a quasistatic and incompress-
ible case and to compare to the inertial and compressible
case in the limit of large bulk modulus K and small velocities
v. We show that the results in this limit agree, giving us some
degree of confidence in the derivation and the numerical
implementation of the equations in both cases.

The unperturbed problem in the quasistatic and incom-
pressible limit was discussed in detail in �13� and is obtained
by taking the quasistatic and the incompressible limits in the
equations of Sec. II C. Before considering the linear stability
problem, we stress that the linear perturbation theory of the
STZ equations, presented in Sec. III B, remains unchanged
in the present analysis. Only the equations of motion and the
kinematic equations are being modified. In the absence of
inertial terms, the equations of motion �2.7� become

��

�r
+

1

r

�s

��
−

1

r

�p

��
+

2�

r
= 0, �B1�

1

r

��

��
−

1

r2

�

�r
�r2s� =

�p

�r
. �B2�

To first order we obtain

−
1

r
n��1� −

2s�1�

r
=

�p�1�

�r
+

�s�1�

�r
, �B3�

���1�

�r
+

n

r
�s�1� − p�1�� +

2��1�

r
= 0. �B4�

The boundary conditions of Eqs. �3.12� and �3.13� can be
further simplified by using the force balance equation to ze-
roth order and the zeroth order boundary conditions of Eq.
�2.31�,

�p�0�

�r
= −

�s�0�

�r
−

2s�0�

r
. �B5�

Substituting into Eqs. �3.12� and �3.13� we obtain

s�1��R�0�� + p�1��R�0�� =
2s�0��R�0��R�1�

R�0� , �B6�

��1��R�0�� = n
2s�0��R�0��R�1�

R�0� . �B7�

In addition, all the first order fields decay as r→. In prin-
ciple, the initial conditions for the partial differential equa-
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tions for the first order fields depend on the type of pertur-
bation under consideration. For explicit perturbations in the
shape of the cavity, i.e., R�1��0��0, we can determine the
initial stress field by assuming it is simply the quasistatic
linear elastic solution corresponding to the perturbed circle.
In order to obtain this solution we start with the bi-Laplace
equation for the Airy stress function � �33�,

�2�2� = 0, �B8�

where the stress tensor components are given by

�rr =
1

r

��

�r
+

1

r2

�2�

��2 ,

��� =
�2�

�r2 , �r� = −
�

�r
�1

r

��

��
� . �B9�

We then expand the solution in the form

��r,�� = ��0��r� + ��1��r�ein�. �B10�

The general solutions for ��1��r�, that also decay at infinity,
are given by

��1��r� = ar−n+2 + br−n, �B11�

with n�0. Substituting in Eqs. �B9�, using the boundary
conditions to first order and the following zeroth order solu-
tion

�rr,��
�0� = ��1 �

�R�0��2

r2 �, �r�
�0� = 0, �B12�

one obtains

a = − �R�0��n�R�1�

R�0� , b = �R�0��n+2�R�1�

R�0� . �B13�

The resulting stress components are easily calculated, from
which we obtain

p�1� = 2�R�1�

R�0� �1 − n��R�0�

r
�n

,

s�1� = ��1� = �R�1�

R�0��n�1 − n��R�0�

r
�n

+ n�n + 1��R�0�

r
�n+2	 . �B14�

These are the initial conditions for the first order stress tensor
components in terms of the initial R�1�. To proceed we ex-
pand Eqs. �2.4� to first order, assuming K→,

�vr
�1�

�r
= −

1

2�
� �s�1�

�t
+ vr

�0��s�1�

�r
+ vr

�1��s�0�

�r
	 − Dpl�1�,

�B15�

− nv�
�1� + vr

�1�

r
=

1

2�
� �s�1�

�t
+ vr

�0��s�1�

�r
+ vr

�1��s�0�

�r
	 + Dpl�1�,

�B16�

1

2
� �v�

�1�

�r
+

nvr
�1� − v�

�1�

r
	 =

1

2�
� ���1�

�t
+ vr

�0����1�

�r
−

2s�0�v�
�1�

r
	

+ Dr�
pl�1�. �B17�

In order to propagate s�1� and ��1� in time according to these
equations we need to know vr

�1� and v�
�1� at each time step.

However, a basic feature of the quasistatic problem is that
there is no evolution equation for the velocity field. There-
fore, we must calculate vr

�1� and v�
�1� in a different way.

We now discuss the major mathematical difficulty in the
quasistatic formulation, i.e., the absence of an explicit evo-
lution equation for the velocity field v�1�. To overcome this
difficulty, we should derive new ordinary differential equa-
tions for vr

�1� and v�
�1� such that their time evolution is inher-

ited from the other fields in the problem. The first equation
can be obtained readily by adding Eq. �B15� to Eq. �B16�,

�vr
�1�

�r
+

vr
�1�

r
−

nv�
�1�

r
= 0, �B18�

from which we can extract v�
�1�,

v�
�1� =

1

n
�r

�vr
�1�

�r
+ vr

�1�� . �B19�

In order to obtain the second equation, we eliminate p�1�

from the equations by operating with �
�r

r
n on Eq. �B4�, adding

the result to Eq. �B3�, and taking the partial time derivative
to obtain

2
�ṡ�1�

�r
+

1

n

�

�r
�r

��̇�1�

�r
� +

2

n

��̇�1�

�r
+

n�̇�1�

r
+

2ṡ�1�

r
= 0.

�B20�

Here and elsewhere the dot denotes partial time derivative.
Using Eqs. �B15� and �B17� we obtain

�̇�1� = 2��− Dr�
pl�1� +

1

2
� �v�

�1�

�r
+

nvr
�1� − v�

�1�

r
�	

− vr
�0����1�

�r
+

2s�0�v�
�1�

r
, �B21�

ṡ�1� = − 2�� �vr
�1�

�r
+ Dpl�1�� − vr

�1��s�0�

�r
− vr

�0��s�1�

�r
.

�B22�

Substituting the last two relations in Eq. �B20� and using Eq.
�B19�, we obtain a fourth order linear ordinary differential
equation for vr

�1�. Since it is straightforward to obtain, but
very lengthy, we do not write it explicitly here. It is impor-
tant to note that the coefficients in this equation depend on
time and therefore by solving it at each time step we effec-
tively have a time evolution for the velocity field. Once one
solves for vr

�1�, Eq. �B19� can be used to calculate v�
�1�. The

fourth order linear differential equation requires four bound-
ary conditions.

The first boundary condition is obtained by using Eq.
�B7�; with Eqs. �B17�, �3.9�, and �B19�, we obtain a linear
relation between vr

�1��R�0��, �rvr
�1��R�0��, and �r

2vr
�1��R�0��,
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which is the required boundary condition. Another boundary
condition is obtained by multiplying Eq. �B4� by r, operating
with D

Dt =�t+vr
�0��r on the result, and using Eq. �B6�. Addi-

tional simple manipulations result in a linear relation be-
tween vr

�1��R�0��, �rvr
�1��R�0��, �r

2vr
�1��R�0��, and �r

3vr
�1��R�0��.

This is a second boundary relation. Two other boundary con-
ditions are obtained from the requirement that vr

�1� vanishes
at  with vanishing derivative

vr
�1��� = 0 and

�vr
�1���
�r

= 0. �B23�

With these four boundary conditions the fourth order differ-
ential equation can be solved in the following way: at each
step we guess vr

�1��R�0� , t� and �rvr
�1��R�0� , t� and use the first

two boundary conditions to calculate �r
2vr

�1��R�0� , t� and
�r

3vr
�1��R�0� , t�. Then we use the fourth order differential equa-

tion to calculate vr
�1� and �rvr

�1� at . We improve our guess
until the solution satisfies Eqs. �B23� �the shooting method�.

Thus, we have a complete solution procedure �assuming
that the plastic rate of deformation is known, see Sec. III B�;
for a given s�1��r , t� and ��1��r , t� we solve the fourth order
differential equation for vr

�1��r , t� following the procedure de-
scribed above. Having vr

�1��r , t� we use Eq. �B19� to obtain
v�

�1��r , t�. Then we use Eqs. �B15�, �B17�, and �3.9� to propa-

gate s�1��r�, ��1��r�, and R�1� in time. We follow the same
procedure at each time step to obtain the full time evolution
of the perturbation. We note that we have eliminated p�1��r , t�
from the problem, though we can calculate it at every time
step using Eq. �B3� or Eq. �B4�.

We are now able to compare the quasistatic and incom-
pressible case to the inertial and compressible counterpart in
the limit of small velocities and large bulk modulus K. We
introduced at t=0 a perturbation of magnitude R�1� /R�0�

=10−3 to the radius of the cavity, with a discrete wave num-
ber n=2, and solved the dynamics in both formulations. We
chose ���th such that the velocities are small and K
=1000 in the inertial case in order to approach the incom-
pressible limit. In Fig. 8 we compare R�0� and R�1� for both
the quasistatic and the inertial formulations. The agreement
is good. Note that the stability of the expanding cavity de-
pends on the time dependence of the ratio R�1� /R�0�; however,
we do not discuss the stability yet, but focus on the compari-
son between the two formulations. In Fig. 9 we further com-
pare the predictions of the two formulations for the zeroth
and first order deviatoric stress field s and effective disorder
temperature � at a given time. In all cases the differences are
practically indistinguishable. We thus conclude that the qua-
sistatic formulation and the inertial one agree with one an-
other, giving us some confidence in the validity of both. In
particular, we conclude that the inertial formulation can be
used with confidence also for high velocities where the qua-
sistatic counterpart becomes invalid.
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